Immunization Route Dictates Cross-Priming Efficiency and Impacts the Optimal Timing of Adjuvant Delivery

نویسندگان

  • Isabelle Bouvier
  • Hélène Jusforgues-Saklani
  • Annick Lim
  • Fabrice Lemaître
  • Brigitte Lemercier
  • Charlotte Auriau
  • Marie-Anne Nicola
  • Sandrine Leroy
  • Helen K. Law
  • Antonio Bandeira
  • James J. Moon
  • Philippe Bousso
  • Matthew L. Albert
چکیده

Delivery of cell-associated antigen represents an important strategy for vaccination. While many experimental models have been developed in order to define the critical parameters for efficient cross-priming, few have utilized quantitative methods that permit the study of the endogenous repertoire. Comparing different strategies of immunization, we report that local delivery of cell-associated antigen results in delayed T cell cross-priming due to the increased time required for antigen capture and presentation. In comparison, delivery of disseminated antigen resulted in rapid T cell priming. Surprisingly, local injection of cell-associated antigen, while slower, resulted in the differentiation of a more robust, polyfunctional, effector response. We also evaluated the combination of cell-associated antigen with poly I:C delivery and observed an immunization route-specific effect regarding the optimal timing of innate immune stimulation. These studies highlight the importance of considering the timing and persistence of antigen presentation, and suggest that intradermal injection with delayed adjuvant delivery is the optimal strategy for achieving CD8⁺ T cell cross-priming.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Alginate Microsphere as a Delivery System and Adjuvant for Autoclaved Leishmania major and Quillaja Saponin: Preparation and Characterization

     The goal of this study was to prepare and characterize alginate microspheres as an antigen delivery system and adjuvant for immunization against leishmaniasis. Microspheres encapsulated with autoclaved Leishmania major (ALM) and Quillaja saponin (QS) were prepared by an emulsification technique and characterized for size, encapsulation efficiency and release profile of encapsulate...

متن کامل

Mucosal Adjuvant Potential of Quillaja saponins and Cross-linked Dextran Microspheres, Co-administered with Liposomes Encapsulated with Tetanus Toxoid

Intranasal vaccination is particularly a striking route for mucosal immunization, due to the ease of administration and the induction of both mucosal and humoral immunity. However, soluble antigens (Ag) are not sufficiently taken up after the nasal administration and need to be co-administered with adjuvants, penetration enhancers or encapsulated in particles. So, in this study, tetanus toxoid ...

متن کامل

Preparation and in-vitro characterization of alginate microspheres incorporating leptospiral antigens as a delivery system and adjuvant

Leptospirosis is one of the most prevalent zoonotic diseases worldwide. Currently, multivalent whole-cell leptospiral vaccines can induce protection against leptospirosis. Therefore, preparation and formulation of new generations of vaccines that can stimulate long-term immunity for leptospirosis control are essential. The aim of this study was to prepare and characterize alginate microspheres ...

متن کامل

Mucosal Adjuvant Potential of Quillaja saponins and Cross-linked Dextran Microspheres, Co-administered with Liposomes Encapsulated with Tetanus Toxoid

Intranasal vaccination is particularly a striking route for mucosal immunization, due to the ease of administration and the induction of both mucosal and humoral immunity. However, soluble antigens (Ag) are not sufficiently taken up after the nasal administration and need to be co-administered with adjuvants, penetration enhancers or encapsulated in particles. So, in this study, tetanus toxoid ...

متن کامل

Evaluation of Mucosal and Systemic Immune Responses Elicited by GPI-0100- Adjuvanted Influenza Vaccine Delivered by Different Immunization Strategies

Vaccines for protection against respiratory infections should optimally induce a mucosal immune response in the respiratory tract in addition to a systemic immune response. However, current parenteral immunization modalities generally fail to induce mucosal immunity, while mucosal vaccine delivery often results in poor systemic immunity. In order to find an immunization strategy which satisfies...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2011